1
1
Fork 0
mirror of https://github.com/QB64-Phoenix-Edition/QB64pe.git synced 2024-09-19 00:24:45 +00:00
QB64-PE/internal/c/parts/audio/out/android/OpenAL/Alc/panning.c
2015-10-30 23:18:44 +11:00

372 lines
14 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alu.h"
static void SetSpeakerArrangement(const char *name, ALfp SpeakerAngle[MAXCHANNELS],
Channel Speaker2Chan[MAXCHANNELS], ALint chans)
{
char layout_str[256];
char *confkey, *next;
char *sep, *end;
Channel val;
int i;
if(!ConfigValueExists(NULL, name))
name = "layout";
strncpy(layout_str, GetConfigValue(NULL, name, ""), sizeof(layout_str));
layout_str[sizeof(layout_str)-1] = 0;
if(!layout_str[0])
return;
next = confkey = layout_str;
while(next && *next)
{
confkey = next;
next = strchr(confkey, ',');
if(next)
{
*next = 0;
do {
next++;
} while(isspace(*next) || *next == ',');
}
sep = strchr(confkey, '=');
if(!sep || confkey == sep)
continue;
end = sep - 1;
while(isspace(*end) && end != confkey)
end--;
*(++end) = 0;
if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0)
val = FRONT_LEFT;
else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0)
val = FRONT_RIGHT;
else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0)
val = FRONT_CENTER;
else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0)
val = BACK_LEFT;
else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0)
val = BACK_RIGHT;
else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0)
val = BACK_CENTER;
else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0)
val = SIDE_LEFT;
else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0)
val = SIDE_RIGHT;
else
{
AL_PRINT("Unknown speaker for %s: \"%s\"\n", name, confkey);
continue;
}
*(sep++) = 0;
while(isspace(*sep))
sep++;
for(i = 0;i < chans;i++)
{
if(Speaker2Chan[i] == val)
{
long angle = strtol(sep, NULL, 10);
if(angle >= -180 && angle <= 180)
SpeakerAngle[i] = ALfpMult(int2ALfp(angle), float2ALfp(M_PI/180.0f));
else
AL_PRINT("Invalid angle for speaker \"%s\": %ld\n", confkey, angle);
break;
}
}
}
for(i = 0;i < chans;i++)
{
int min = i;
int i2;
for(i2 = i+1;i2 < chans;i2++)
{
if(SpeakerAngle[i2] < SpeakerAngle[min])
min = i2;
}
if(min != i)
{
ALfp tmpf;
Channel tmpc;
tmpf = SpeakerAngle[i];
SpeakerAngle[i] = SpeakerAngle[min];
SpeakerAngle[min] = tmpf;
tmpc = Speaker2Chan[i];
Speaker2Chan[i] = Speaker2Chan[min];
Speaker2Chan[min] = tmpc;
}
}
}
static ALfp aluLUTpos2Angle(ALint pos)
{
if(pos < QUADRANT_NUM)
return aluAtan(ALfpDiv(int2ALfp(pos), int2ALfp(QUADRANT_NUM - pos)));
if(pos < 2 * QUADRANT_NUM)
return (float2ALfp(M_PI_2) + aluAtan(ALfpDiv(int2ALfp(pos - QUADRANT_NUM),int2ALfp(2 * QUADRANT_NUM - pos))));
if(pos < 3 * QUADRANT_NUM)
return (aluAtan(ALfpDiv(int2ALfp(pos - 2 * QUADRANT_NUM), int2ALfp(3 * QUADRANT_NUM - pos))) - float2ALfp(M_PI));
return (aluAtan(ALfpDiv(int2ALfp(pos - 3 * QUADRANT_NUM), int2ALfp(4 * QUADRANT_NUM - pos))) - float2ALfp(M_PI));
}
ALint aluCart2LUTpos(ALfp re, ALfp im)
{
ALint pos = 0;
ALfp denom = (aluFabs(re) + aluFabs(im));
if(denom > int2ALfp(0))
pos = (ALint)ALfp2int(ALfpDiv(ALfpMult(int2ALfp(QUADRANT_NUM),aluFabs(im)), (denom + float2ALfp(0.5))));
if(re < int2ALfp(0))
pos = 2 * QUADRANT_NUM - pos;
if(im < int2ALfp(0))
pos = LUT_NUM - pos;
return pos%LUT_NUM;
}
ALvoid aluInitPanning(ALCdevice *Device)
{
ALfp SpeakerAngle[MAXCHANNELS];
ALfp (*Matrix)[MAXCHANNELS];
Channel *Speaker2Chan;
ALfp Alpha, Theta;
ALfp *PanningLUT;
ALint pos, offset;
ALuint s, s2;
for(s = 0;s < MAXCHANNELS;s++)
{
for(s2 = 0;s2 < MAXCHANNELS;s2++)
Device->ChannelMatrix[s][s2] = ((s==s2) ? int2ALfp(1) : int2ALfp(0));
}
Speaker2Chan = Device->Speaker2Chan;
Matrix = Device->ChannelMatrix;
switch(Device->FmtChans)
{
case DevFmtMono:
Matrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][FRONT_CENTER] = int2ALfp(1);
Device->NumChan = 1;
Speaker2Chan[0] = FRONT_CENTER;
SpeakerAngle[0] = int2ALfp(0);
break;
case DevFmtStereo:
#ifdef APPORTABLE_OPTIMIZED_OUT
// Leave as identity matrix if Apportable-optimized
Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_LEFT][FRONT_LEFT] = int2ALfp(1);
Matrix[SIDE_RIGHT][FRONT_RIGHT] = int2ALfp(1);
Matrix[BACK_LEFT][FRONT_LEFT] = int2ALfp(1);
Matrix[BACK_RIGHT][FRONT_RIGHT] = int2ALfp(1);
Matrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5));
#endif
Device->NumChan = 2;
Speaker2Chan[0] = FRONT_LEFT;
Speaker2Chan[1] = FRONT_RIGHT;
SpeakerAngle[0] = float2ALfp(-90.0f * M_PI/180.0f);
SpeakerAngle[1] = float2ALfp( 90.0f * M_PI/180.0f);
SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
#ifdef STEREO_ONLY
case DevFmtQuad:
case DevFmtX51:
case DevFmtX61:
case DevFmtX71:
break;
#else
case DevFmtQuad:
Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5));
Device->NumChan = 4;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_RIGHT;
Speaker2Chan[3] = BACK_RIGHT;
SpeakerAngle[0] = float2ALfp(-135.0f * M_PI/180.0f);
SpeakerAngle[1] = float2ALfp( -45.0f * M_PI/180.0f);
SpeakerAngle[2] = float2ALfp( 45.0f * M_PI/180.0f);
SpeakerAngle[3] = float2ALfp( 135.0f * M_PI/180.0f);
SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case DevFmtX51:
Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5));
Device->NumChan = 5;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = BACK_RIGHT;
SpeakerAngle[0] = float2ALfp(-110.0f * M_PI/180.0f);
SpeakerAngle[1] = float2ALfp( -30.0f * M_PI/180.0f);
SpeakerAngle[2] = float2ALfp( 0.0f * M_PI/180.0f);
SpeakerAngle[3] = float2ALfp( 30.0f * M_PI/180.0f);
SpeakerAngle[4] = float2ALfp( 110.0f * M_PI/180.0f);
SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case DevFmtX61:
Matrix[BACK_LEFT][BACK_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(float2ALfp(0.5));
Device->NumChan = 6;
Speaker2Chan[0] = SIDE_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = SIDE_RIGHT;
Speaker2Chan[5] = BACK_CENTER;
SpeakerAngle[0] = float2ALfp(-90.0f * M_PI/180.0f);
SpeakerAngle[1] = float2ALfp(-30.0f * M_PI/180.0f);
SpeakerAngle[2] = float2ALfp( 0.0f * M_PI/180.0f);
SpeakerAngle[3] = float2ALfp( 30.0f * M_PI/180.0f);
SpeakerAngle[4] = float2ALfp( 90.0f * M_PI/180.0f);
SpeakerAngle[5] = float2ALfp(180.0f * M_PI/180.0f);
SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case DevFmtX71:
Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5));
Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5));
Device->NumChan = 7;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = SIDE_LEFT;
Speaker2Chan[2] = FRONT_LEFT;
Speaker2Chan[3] = FRONT_CENTER;
Speaker2Chan[4] = FRONT_RIGHT;
Speaker2Chan[5] = SIDE_RIGHT;
Speaker2Chan[6] = BACK_RIGHT;
SpeakerAngle[0] = float2ALfp(-150.0f * M_PI/180.0f);
SpeakerAngle[1] = float2ALfp( -90.0f * M_PI/180.0f);
SpeakerAngle[2] = float2ALfp( -30.0f * M_PI/180.0f);
SpeakerAngle[3] = float2ALfp( 0.0f * M_PI/180.0f);
SpeakerAngle[4] = float2ALfp( 30.0f * M_PI/180.0f);
SpeakerAngle[5] = float2ALfp( 90.0f * M_PI/180.0f);
SpeakerAngle[6] = float2ALfp( 150.0f * M_PI/180.0f);
SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
#endif
}
if(GetConfigValueBool(NULL, "scalemix", 0))
{
ALfp maxout = int2ALfp(1);;
for(s = 0;s < MAXCHANNELS;s++)
{
ALfp out = int2ALfp(0);
for(s2 = 0;s2 < MAXCHANNELS;s2++)
out = (out + Device->ChannelMatrix[s2][s]);
maxout = __max(maxout, out);
}
maxout = ALfpDiv(int2ALfp(1),maxout);
for(s = 0;s < MAXCHANNELS;s++)
{
for(s2 = 0;s2 < MAXCHANNELS;s2++)
Device->ChannelMatrix[s2][s] = ALfpMult(Device->ChannelMatrix[s2][s],maxout);
}
}
PanningLUT = Device->PanningLUT;
for(pos = 0; pos < LUT_NUM; pos++)
{
/* clear all values */
offset = MAXCHANNELS * pos;
for(s = 0; s < MAXCHANNELS; s++)
PanningLUT[offset+s] = int2ALfp(0);
if(Device->NumChan == 1)
{
PanningLUT[offset + Speaker2Chan[0]] = int2ALfp(1);
continue;
}
/* source angle */
Theta = aluLUTpos2Angle(pos);
/* set panning values */
for(s = 0; s < Device->NumChan - 1; s++)
{
if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
{
/* source between speaker s and speaker s+1 */
Alpha = ALfpDiv(ALfpMult(float2ALfp(M_PI_2), (Theta-SpeakerAngle[s])),
(SpeakerAngle[s+1]-SpeakerAngle[s]));
PanningLUT[offset + Speaker2Chan[s]] = __cos(Alpha);
PanningLUT[offset + Speaker2Chan[s+1]] = __sin(Alpha);
break;
}
}
if(s == Device->NumChan - 1)
{
/* source between last and first speaker */
if(Theta < SpeakerAngle[0])
Theta = (Theta + float2ALfp(2.0f * M_PI));
Alpha = ALfpDiv(ALfpMult(float2ALfp(M_PI_2), (Theta-SpeakerAngle[s])),
(float2ALfp(2.0f * M_PI) + SpeakerAngle[0]-SpeakerAngle[s]));
PanningLUT[offset + Speaker2Chan[s]] = __cos(Alpha);
PanningLUT[offset + Speaker2Chan[0]] = __sin(Alpha);
}
}
}