/* fractals.c */ /* * Program to draw a fractal by Michael Barnsley's deterministic algorithm. * Algorithm: * (1) Define the affine transformations (of the form r(i+1) = A r(i) + b ) * (2) Find the stationary point for each transformation * (3) To draw: * - If you are at the lowest level, draw lines connecting all the stationary points * - If not, call the draw function recursively with each affine transformation applied */ /* * User Commands: * +,- - increment/decrement number of levels * PgUp, PgDn - increase/decrease scaling * Arrow keys - translate viewing section * r - reset view * Escape - quit */ #include #include #include #include #include typedef struct { double a00, a01, a10, a11 ; /* Transformation matrix */ double b0, b1 ; /* Constant vector added on */ double statx, staty ; /* Coordinates of the stationary point */ } AffineTrans ; /* Number of levels to draw the fractal */ static int num_levels = 4 ; /* The definition of the fractal */ static int num_trans ; static AffineTrans *affine ; /* Flag telling us to keep executing the main loop */ static int continue_in_main_loop = 1; /* the window title */ char window_title [ 80 ] ; /* The amount the view is translated and scaled */ double xwin = 0.0, ywin = 0.0 ; double scale_factor = 1.0 ; static void draw_level ( int num, double m00, double m01, double m10, double m11, double n0, double n1 ) { /* Draw a fractal transformed by "M", "N" as passed in */ int i ; if ( num == 0 ) { double x0 = m00 * affine[0].statx + m01 * affine[0].staty + n0 ; double y0 = m10 * affine[0].statx + m11 * affine[0].staty + n1 ; for ( i = 1; i < num_trans; i++ ) { double x1 = m00 * affine[i].statx + m01 * affine[i].staty + n0 ; double y1 = m10 * affine[i].statx + m11 * affine[i].staty + n1 ; glVertex2d ( x0, y0 ) ; glVertex2d ( x1, y1 ) ; x0 = x1 ; y0 = y1 ; } } else { /* Map each affine transformation in the fractal through the one passed in and call "draw_level" */ for ( i = 0; i < num_trans; i++ ) { draw_level ( num-1, m00*affine[i].a00+m01*affine[i].a10, m00*affine[i].a01+m01*affine[i].a11, m10*affine[i].a00+m11*affine[i].a10, m10*affine[i].a01+m11*affine[i].a11, m00*affine[i].b0 +m01*affine[i].b1 + n0, m10*affine[i].b0 +m11*affine[i].b1 + n1 ) ; } } } static void Display(void) { glClear( GL_COLOR_BUFFER_BIT ); /* the curve */ glPushMatrix(); glScalef(2.5, 2.5, 2.5); glColor4f(0.0, 0.0, 0.0, 1.0); glBegin ( GL_LINES ) ; draw_level ( num_levels, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 ); glEnd () ; glPopMatrix(); glutSwapBuffers(); } static void Reshape(int width, int height) { float ar; glViewport ( 0, 0, width, height ) ; glMatrixMode ( GL_PROJECTION ) ; glLoadIdentity(); ar = (float) width / (float) height ; if( ar > 1 ) glFrustum ( -ar, ar, -1.0, 1.0, 2.0, 100.0 ) ; else glFrustum ( -1.0, 1.0, -1/ar, 1/ar, 2.0, 100.0 ); glMatrixMode ( GL_MODELVIEW ) ; glLoadIdentity () ; xwin = -1.0 ; ywin = 0.0 ; glTranslated ( xwin, ywin, -5.0 ) ; } static void Key(unsigned char key, int x, int y) { int need_redisplay = 1; switch (key) { case 27: /* Escape key */ continue_in_main_loop = 0 ; break; case '+' : ++num_levels ; break ; case '-' : if ( num_levels > 0 ) --num_levels ; break ; case 'r' : case 'R' : glMatrixMode ( GL_MODELVIEW ) ; glLoadIdentity(); xwin = -1.0 ; ywin = 0.0 ; glTranslated ( xwin, ywin, -5.0 ) ; break ; default: need_redisplay = 0; break; } if (need_redisplay) glutPostRedisplay(); } static void Special(int key, int x, int y) { int need_redisplay = 1; switch (key) { case GLUT_KEY_UP : glMatrixMode ( GL_MODELVIEW ) ; ywin += 0.1 * scale_factor ; glTranslated ( 0.0, 0.1 * scale_factor, 0.0 ) ; break ; case GLUT_KEY_DOWN : glMatrixMode ( GL_MODELVIEW ) ; ywin -= 0.1 * scale_factor ; glTranslated ( 0.0, -0.1 * scale_factor, 0.0 ) ; break ; case GLUT_KEY_LEFT : glMatrixMode ( GL_MODELVIEW ) ; xwin -= 0.1 * scale_factor ; glTranslated ( -0.1 * scale_factor, 0.0, 0.0 ) ; break ; case GLUT_KEY_RIGHT : glMatrixMode ( GL_MODELVIEW ) ; xwin += 0.1 * scale_factor ; glTranslated ( 0.1 * scale_factor, 0.0, 0.0 ) ; break ; case GLUT_KEY_PAGE_UP : glMatrixMode ( GL_MODELVIEW ) ; glTranslated ( -xwin, -ywin, 0.0 ) ; glScaled ( 1.25, 1.25, 1.25 ) ; glTranslated ( xwin, ywin, 0.0 ) ; scale_factor *= 0.8 ; break ; case GLUT_KEY_PAGE_DOWN : glMatrixMode ( GL_MODELVIEW ) ; glTranslated ( -xwin, -ywin, 0.0 ) ; glScaled ( 0.8, 0.8, 0.8 ) ; glTranslated ( xwin, ywin, 0.0 ) ; scale_factor *= 1.25 ; break ; default: need_redisplay = 0; break; } if (need_redisplay) glutPostRedisplay(); } static void checkedFGets ( char *s, int size, FILE *stream ) { if ( fgets ( s, size, stream ) == NULL ) { fprintf ( stderr, "fgets failed\n"); exit ( EXIT_FAILURE ); } } void readConfigFile ( char *fnme ) { FILE *fptr = fopen ( fnme, "rt" ) ; int i ; char inputline [ 256 ] ; if ( fptr ) { /* Read a header line */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; /* Read a comment line */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; /* Read the window title */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; /* We assume here that this line will not exceed 79 characters plus a newline (window_title is 80 characters long). That'll cause a buffer overflow. For a simple program like this, though, we're letting it slide! */ sscanf ( inputline, "%[a-zA-Z0-9!@#$%^&*()+=/\\_-\" ]", window_title ) ; /* Read a comment line */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; /* Read the number of affine transformations */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; sscanf ( inputline, "%d", &num_trans ) ; affine = (AffineTrans *)malloc ( num_trans * sizeof(AffineTrans) ) ; /* Read a comment line */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; for ( i = 0; i < num_trans; i++ ) { /* Read an affine transformation definition */ checkedFGets ( inputline, sizeof ( inputline ), fptr ) ; sscanf ( inputline, "%lf %lf %lf %lf %lf %lf", &affine[i].a00, &affine[i].a01, &affine[i].a10, &affine[i].a11, &affine[i].b0, &affine[i].b1 ) ; } } else /* No data file, set a default */ { printf ( "ERROR opening file <%s>\n", fnme ) ; strcpy ( window_title, "Cantor Dust" ) ; num_trans = 2 ; affine = (AffineTrans *)malloc ( num_trans * sizeof(AffineTrans) ) ; affine[0].a00 = 0.25 ; affine[0].a01 = 0.00 ; affine[0].a10 = 0.00 ; affine[0].a11 = 0.25 ; affine[0].b0 = 0.0 ; affine[0].b1 = 0.0 ; affine[1].a00 = 0.25 ; affine[1].a01 = 0.00 ; affine[1].a10 = 0.00 ; affine[1].a11 = 0.25 ; affine[1].b0 = 0.5 ; affine[1].b1 = 0.0 ; } for ( i = 0; i < num_trans; i++ ) { double m00, m01, m10, m11 ; /* Matrix "I" minus "A" */ double determ ; /* Determinant of this matrix */ /* Calculate the stationary point */ m00 = 1.0 - affine[i].a00 ; m01 = - affine[i].a01 ; m10 = - affine[i].a10 ; m11 = 1.0 - affine[i].a11 ; determ = m00 * m11 - m01 * m10 ; if ( fabs ( determ ) > 1.e-6 ) { affine[i].statx = ( m11 * affine[i].b0 - m01 * affine[i].b1 ) / determ ; affine[i].staty = ( -m10 * affine[i].b0 + m00 * affine[i].b1 ) / determ ; } else affine[i].statx = affine[i].staty = 0.0 ; } } int main(int argc, char *argv[]) { int fractal_window ; glutInitWindowSize(500, 250); glutInitWindowPosition ( 140, 140 ); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE ); glutInit(&argc, argv); if ( argc > 1 ) readConfigFile ( argv[1] ) ; else readConfigFile ( "fractals.dat" ) ; fractal_window = glutCreateWindow( window_title ); glClearColor(1.0, 1.0, 1.0, 1.0); glutReshapeFunc(Reshape); glutKeyboardFunc(Key); glutSpecialFunc(Special); glutDisplayFunc(Display); #ifdef WIN32 #endif while ( continue_in_main_loop ) glutMainLoopEvent(); printf ( "Back from the 'freeglut' main loop\n" ) ; return 0; /* ANSI C requires main to return int. */ }