/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alu.h" static void SetSpeakerArrangement(const char *name, ALfp SpeakerAngle[MAXCHANNELS], Channel Speaker2Chan[MAXCHANNELS], ALint chans) { char layout_str[256]; char *confkey, *next; char *sep, *end; Channel val; int i; if(!ConfigValueExists(NULL, name)) name = "layout"; strncpy(layout_str, GetConfigValue(NULL, name, ""), sizeof(layout_str)); layout_str[sizeof(layout_str)-1] = 0; if(!layout_str[0]) return; next = confkey = layout_str; while(next && *next) { confkey = next; next = strchr(confkey, ','); if(next) { *next = 0; do { next++; } while(isspace(*next) || *next == ','); } sep = strchr(confkey, '='); if(!sep || confkey == sep) continue; end = sep - 1; while(isspace(*end) && end != confkey) end--; *(++end) = 0; if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0) val = FRONT_LEFT; else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0) val = FRONT_RIGHT; else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0) val = FRONT_CENTER; else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0) val = BACK_LEFT; else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0) val = BACK_RIGHT; else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0) val = BACK_CENTER; else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0) val = SIDE_LEFT; else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0) val = SIDE_RIGHT; else { AL_PRINT("Unknown speaker for %s: \"%s\"\n", name, confkey); continue; } *(sep++) = 0; while(isspace(*sep)) sep++; for(i = 0;i < chans;i++) { if(Speaker2Chan[i] == val) { long angle = strtol(sep, NULL, 10); if(angle >= -180 && angle <= 180) SpeakerAngle[i] = ALfpMult(int2ALfp(angle), float2ALfp(M_PI/180.0f)); else AL_PRINT("Invalid angle for speaker \"%s\": %ld\n", confkey, angle); break; } } } for(i = 0;i < chans;i++) { int min = i; int i2; for(i2 = i+1;i2 < chans;i2++) { if(SpeakerAngle[i2] < SpeakerAngle[min]) min = i2; } if(min != i) { ALfp tmpf; Channel tmpc; tmpf = SpeakerAngle[i]; SpeakerAngle[i] = SpeakerAngle[min]; SpeakerAngle[min] = tmpf; tmpc = Speaker2Chan[i]; Speaker2Chan[i] = Speaker2Chan[min]; Speaker2Chan[min] = tmpc; } } } static ALfp aluLUTpos2Angle(ALint pos) { if(pos < QUADRANT_NUM) return aluAtan(ALfpDiv(int2ALfp(pos), int2ALfp(QUADRANT_NUM - pos))); if(pos < 2 * QUADRANT_NUM) return (float2ALfp(M_PI_2) + aluAtan(ALfpDiv(int2ALfp(pos - QUADRANT_NUM),int2ALfp(2 * QUADRANT_NUM - pos)))); if(pos < 3 * QUADRANT_NUM) return (aluAtan(ALfpDiv(int2ALfp(pos - 2 * QUADRANT_NUM), int2ALfp(3 * QUADRANT_NUM - pos))) - float2ALfp(M_PI)); return (aluAtan(ALfpDiv(int2ALfp(pos - 3 * QUADRANT_NUM), int2ALfp(4 * QUADRANT_NUM - pos))) - float2ALfp(M_PI)); } ALint aluCart2LUTpos(ALfp re, ALfp im) { ALint pos = 0; ALfp denom = (aluFabs(re) + aluFabs(im)); if(denom > int2ALfp(0)) pos = (ALint)ALfp2int(ALfpDiv(ALfpMult(int2ALfp(QUADRANT_NUM),aluFabs(im)), (denom + float2ALfp(0.5)))); if(re < int2ALfp(0)) pos = 2 * QUADRANT_NUM - pos; if(im < int2ALfp(0)) pos = LUT_NUM - pos; return pos%LUT_NUM; } ALvoid aluInitPanning(ALCdevice *Device) { ALfp SpeakerAngle[MAXCHANNELS]; ALfp (*Matrix)[MAXCHANNELS]; Channel *Speaker2Chan; ALfp Alpha, Theta; ALfp *PanningLUT; ALint pos, offset; ALuint s, s2; for(s = 0;s < MAXCHANNELS;s++) { for(s2 = 0;s2 < MAXCHANNELS;s2++) Device->ChannelMatrix[s][s2] = ((s==s2) ? int2ALfp(1) : int2ALfp(0)); } Speaker2Chan = Device->Speaker2Chan; Matrix = Device->ChannelMatrix; switch(Device->FmtChans) { case DevFmtMono: Matrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][FRONT_CENTER] = int2ALfp(1); Device->NumChan = 1; Speaker2Chan[0] = FRONT_CENTER; SpeakerAngle[0] = int2ALfp(0); break; case DevFmtStereo: #ifdef APPORTABLE_OPTIMIZED_OUT // Leave as identity matrix if Apportable-optimized Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_LEFT][FRONT_LEFT] = int2ALfp(1); Matrix[SIDE_RIGHT][FRONT_RIGHT] = int2ALfp(1); Matrix[BACK_LEFT][FRONT_LEFT] = int2ALfp(1); Matrix[BACK_RIGHT][FRONT_RIGHT] = int2ALfp(1); Matrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5)); #endif Device->NumChan = 2; Speaker2Chan[0] = FRONT_LEFT; Speaker2Chan[1] = FRONT_RIGHT; SpeakerAngle[0] = float2ALfp(-90.0f * M_PI/180.0f); SpeakerAngle[1] = float2ALfp( 90.0f * M_PI/180.0f); SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Device->NumChan); break; #ifdef STEREO_ONLY case DevFmtQuad: case DevFmtX51: case DevFmtX61: case DevFmtX71: break; #else case DevFmtQuad: Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5)); Device->NumChan = 4; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_RIGHT; Speaker2Chan[3] = BACK_RIGHT; SpeakerAngle[0] = float2ALfp(-135.0f * M_PI/180.0f); SpeakerAngle[1] = float2ALfp( -45.0f * M_PI/180.0f); SpeakerAngle[2] = float2ALfp( 45.0f * M_PI/180.0f); SpeakerAngle[3] = float2ALfp( 135.0f * M_PI/180.0f); SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX51: Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5)); Device->NumChan = 5; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_CENTER; Speaker2Chan[3] = FRONT_RIGHT; Speaker2Chan[4] = BACK_RIGHT; SpeakerAngle[0] = float2ALfp(-110.0f * M_PI/180.0f); SpeakerAngle[1] = float2ALfp( -30.0f * M_PI/180.0f); SpeakerAngle[2] = float2ALfp( 0.0f * M_PI/180.0f); SpeakerAngle[3] = float2ALfp( 30.0f * M_PI/180.0f); SpeakerAngle[4] = float2ALfp( 110.0f * M_PI/180.0f); SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX61: Matrix[BACK_LEFT][BACK_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(float2ALfp(0.5)); Device->NumChan = 6; Speaker2Chan[0] = SIDE_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_CENTER; Speaker2Chan[3] = FRONT_RIGHT; Speaker2Chan[4] = SIDE_RIGHT; Speaker2Chan[5] = BACK_CENTER; SpeakerAngle[0] = float2ALfp(-90.0f * M_PI/180.0f); SpeakerAngle[1] = float2ALfp(-30.0f * M_PI/180.0f); SpeakerAngle[2] = float2ALfp( 0.0f * M_PI/180.0f); SpeakerAngle[3] = float2ALfp( 30.0f * M_PI/180.0f); SpeakerAngle[4] = float2ALfp( 90.0f * M_PI/180.0f); SpeakerAngle[5] = float2ALfp(180.0f * M_PI/180.0f); SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX71: Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(float2ALfp(0.5)); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(float2ALfp(0.5)); Device->NumChan = 7; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = SIDE_LEFT; Speaker2Chan[2] = FRONT_LEFT; Speaker2Chan[3] = FRONT_CENTER; Speaker2Chan[4] = FRONT_RIGHT; Speaker2Chan[5] = SIDE_RIGHT; Speaker2Chan[6] = BACK_RIGHT; SpeakerAngle[0] = float2ALfp(-150.0f * M_PI/180.0f); SpeakerAngle[1] = float2ALfp( -90.0f * M_PI/180.0f); SpeakerAngle[2] = float2ALfp( -30.0f * M_PI/180.0f); SpeakerAngle[3] = float2ALfp( 0.0f * M_PI/180.0f); SpeakerAngle[4] = float2ALfp( 30.0f * M_PI/180.0f); SpeakerAngle[5] = float2ALfp( 90.0f * M_PI/180.0f); SpeakerAngle[6] = float2ALfp( 150.0f * M_PI/180.0f); SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; #endif } if(GetConfigValueBool(NULL, "scalemix", 0)) { ALfp maxout = int2ALfp(1);; for(s = 0;s < MAXCHANNELS;s++) { ALfp out = int2ALfp(0); for(s2 = 0;s2 < MAXCHANNELS;s2++) out = (out + Device->ChannelMatrix[s2][s]); maxout = __max(maxout, out); } maxout = ALfpDiv(int2ALfp(1),maxout); for(s = 0;s < MAXCHANNELS;s++) { for(s2 = 0;s2 < MAXCHANNELS;s2++) Device->ChannelMatrix[s2][s] = ALfpMult(Device->ChannelMatrix[s2][s],maxout); } } PanningLUT = Device->PanningLUT; for(pos = 0; pos < LUT_NUM; pos++) { /* clear all values */ offset = MAXCHANNELS * pos; for(s = 0; s < MAXCHANNELS; s++) PanningLUT[offset+s] = int2ALfp(0); if(Device->NumChan == 1) { PanningLUT[offset + Speaker2Chan[0]] = int2ALfp(1); continue; } /* source angle */ Theta = aluLUTpos2Angle(pos); /* set panning values */ for(s = 0; s < Device->NumChan - 1; s++) { if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1]) { /* source between speaker s and speaker s+1 */ Alpha = ALfpDiv(ALfpMult(float2ALfp(M_PI_2), (Theta-SpeakerAngle[s])), (SpeakerAngle[s+1]-SpeakerAngle[s])); PanningLUT[offset + Speaker2Chan[s]] = __cos(Alpha); PanningLUT[offset + Speaker2Chan[s+1]] = __sin(Alpha); break; } } if(s == Device->NumChan - 1) { /* source between last and first speaker */ if(Theta < SpeakerAngle[0]) Theta = (Theta + float2ALfp(2.0f * M_PI)); Alpha = ALfpDiv(ALfpMult(float2ALfp(M_PI_2), (Theta-SpeakerAngle[s])), (float2ALfp(2.0f * M_PI) + SpeakerAngle[0]-SpeakerAngle[s])); PanningLUT[offset + Speaker2Chan[s]] = __cos(Alpha); PanningLUT[offset + Speaker2Chan[0]] = __sin(Alpha); } } }