1
1
Fork 0
mirror of https://github.com/QB64Official/qb64.git synced 2024-09-19 22:35:24 +00:00
qb64/internal/c/parts/audio/out/android/OpenAL/Alc/alcModulator.c
2015-10-30 23:18:44 +11:00

229 lines
7.8 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
typedef struct ALmodulatorState {
// Must be first in all effects!
ALeffectState state;
enum {
SINUSOID,
SAWTOOTH,
SQUARE
} Waveform;
ALuint index;
ALuint step;
ALfp Gain[MAXCHANNELS];
FILTER iirFilter;
ALfp history[1];
} ALmodulatorState;
#define WAVEFORM_FRACBITS 16
#define WAVEFORM_FRACMASK ((1<<WAVEFORM_FRACBITS)-1)
static __inline ALfp sin_func(ALuint index)
{
return __sin(ALdfpMult(ALdfpDiv(int2ALdfp(index),double2ALdfp(1<<WAVEFORM_FRACBITS)), double2ALdfp(M_PI * 2.0f)));
}
static __inline ALfp saw_func(ALuint index)
{
return (ALfpDiv(int2ALfp(index*2), int2ALfp(1<<WAVEFORM_FRACBITS)) - int2ALfp(1));
}
static __inline ALfp square_func(ALuint index)
{
return int2ALfp((float)((index>>(WAVEFORM_FRACBITS-1))&1) ? -1 : 1);
}
static __inline ALfp hpFilter1P(FILTER *iir, ALuint offset, ALfp input)
{
ALfp *history = &iir->history[offset];
ALfp a = iir->coeff;
ALfp output = input;
output = (output + ALfpMult((history[0]-output),a));
history[0] = output;
return (input - output);
}
static ALvoid ModulatorDestroy(ALeffectState *effect)
{
ALmodulatorState *state = (ALmodulatorState*)effect;
free(state);
}
static ALboolean ModulatorDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
{
ALmodulatorState *state = (ALmodulatorState*)effect;
ALuint index;
for(index = 0;index < MAXCHANNELS;index++)
state->Gain[index] = int2ALfp(0);
for(index = 0;index < Device->NumChan;index++)
{
Channel chan = Device->Speaker2Chan[index];
state->Gain[chan] = int2ALfp(1);
}
return AL_TRUE;
}
static ALvoid ModulatorUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
{
ALmodulatorState *state = (ALmodulatorState*)effect;
ALfp cw, a;
a = int2ALfp(0);
if(Effect->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
state->Waveform = SINUSOID;
else if(Effect->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
state->Waveform = SAWTOOTH;
else if(Effect->Modulator.Waveform == AL_RING_MODULATOR_SQUARE)
state->Waveform = SQUARE;
state->step = ALfp2int(ALfpDiv(ALfpMult(Effect->Modulator.Frequency,
int2ALfp(1<<WAVEFORM_FRACBITS)),
int2ALfp(Context->Device->Frequency)));
if(!state->step)
state->step = 1;
cw = __cos(ALfpDiv(ALfpMult(float2ALfp(2.0*M_PI),
Effect->Modulator.HighPassCutoff),
int2ALfp(Context->Device->Frequency)));
a = ((int2ALfp(2)-cw) -
aluSqrt((aluPow((int2ALfp(2)-cw), int2ALfp(2)) - int2ALfp(1))));
state->iirFilter.coeff = a;
}
static ALvoid ModulatorProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfp *SamplesIn, ALfp (*SamplesOut)[MAXCHANNELS])
{
ALmodulatorState *state = (ALmodulatorState*)effect;
const ALfp gain = Slot->Gain;
const ALuint step = state->step;
ALuint index = state->index;
ALfp samp;
ALuint i;
switch(state->Waveform)
{
case SINUSOID:
for(i = 0;i < SamplesToDo;i++)
{
#ifdef APPORTABLE_OPTIMIZED_OUT
#define FILTER_OUT(func) do { \
samp = SamplesIn[i]; \
\
index += step; \
index &= WAVEFORM_FRACMASK; \
samp *= func(index); \
\
samp = hpFilter1P(&state->iirFilter, 0, samp); \
\
/* Apply slot gain */ \
samp *= gain; \
\
SamplesOut[i][FRONT_LEFT] += state->Gain[FRONT_LEFT] * samp; \
SamplesOut[i][FRONT_RIGHT] += state->Gain[FRONT_RIGHT] * samp; \
SamplesOut[i][FRONT_CENTER] += state->Gain[FRONT_CENTER] * samp; \
SamplesOut[i][SIDE_LEFT] += state->Gain[SIDE_LEFT] * samp; \
SamplesOut[i][SIDE_RIGHT] += state->Gain[SIDE_RIGHT] * samp; \
SamplesOut[i][BACK_LEFT] += state->Gain[BACK_LEFT] * samp; \
SamplesOut[i][BACK_RIGHT] += state->Gain[BACK_RIGHT] * samp; \
SamplesOut[i][BACK_CENTER] += state->Gain[BACK_CENTER] * samp; \
} while(0)
#else
//Apportable optimized version
#define FILTER_OUT(func) do { \
samp = SamplesIn[i]; \
\
index += step; \
index &= WAVEFORM_FRACMASK; \
samp = ALfpMult(samp, func(index)); \
\
samp = hpFilter1P(&state->iirFilter, 0, samp); \
\
/* Apply slot gain */ \
samp = ALfpMult(samp, gain); \
\
SamplesOut[i][FRONT_LEFT] += ALfpMult(state->Gain[FRONT_LEFT], samp); \
SamplesOut[i][FRONT_RIGHT] += ALfpMult(state->Gain[FRONT_RIGHT], samp); \
} while(0)
#endif
FILTER_OUT(sin_func);
}
break;
case SAWTOOTH:
for(i = 0;i < SamplesToDo;i++)
{
FILTER_OUT(saw_func);
}
break;
case SQUARE:
for(i = 0;i < SamplesToDo;i++)
{
FILTER_OUT(square_func);
#undef FILTER_OUT
}
break;
}
state->index = index;
}
ALeffectState *ModulatorCreate(void)
{
ALmodulatorState *state;
state = malloc(sizeof(*state));
if(!state)
return NULL;
state->state.Destroy = ModulatorDestroy;
state->state.DeviceUpdate = ModulatorDeviceUpdate;
state->state.Update = ModulatorUpdate;
state->state.Process = ModulatorProcess;
state->index = 0;
state->step = 1;
state->iirFilter.coeff = int2ALfp(0);
state->iirFilter.history[0] = int2ALfp(0);
return &state->state;
}