1
1
Fork 0
mirror of https://github.com/QB64Official/qb64.git synced 2024-09-19 22:35:24 +00:00
qb64/internal/c/parts/core/android_core/src/fg_geometry.c

1371 lines
47 KiB
C

/*
* freeglut_geometry.c
*
* Freeglut geometry rendering methods.
*
* Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
* Creation date: Fri Dec 3 1999
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <GL/freeglut.h>
#include "fg_internal.h"
/*
*
* Need more types of polyhedra? See CPolyhedron in MRPT
*
* TODO BEFORE THE STABLE RELEASE:
*
* See fghTetrahedron
*
* Following functions have been contributed by Andreas Umbach.
*
* glutWireCube() -- looks OK
* glutSolidCube() -- OK
*
* Those functions have been implemented by John Fay.
*
* glutWireTorus() -- looks OK
* glutSolidTorus() -- looks OK
* glutWireDodecahedron() -- looks OK
* glutSolidDodecahedron() -- looks OK
* glutWireOctahedron() -- looks OK
* glutSolidOctahedron() -- looks OK
* glutWireTetrahedron() -- looks OK
* glutSolidTetrahedron() -- looks OK
* glutWireIcosahedron() -- looks OK
* glutSolidIcosahedron() -- looks OK
*
* The Following functions have been updated by Nigel Stewart, based
* on FreeGLUT 2.0.0 implementations:
*
* glutWireSphere() -- looks OK
* glutSolidSphere() -- looks OK
* glutWireCone() -- looks OK
* glutSolidCone() -- looks OK
*/
/* General function for drawing geometry. As for all geometry we have no
* redundancy (or hardly any in the case of cones and cylinders) in terms
* of the vertex/normal combinations, we just use glDrawArrays.
* useWireMode controls the drawing of solids (false) or wire frame
* versions (TRUE) of the geometry you pass
*/
static void fghDrawGeometry(GLenum vertexMode, GLdouble *vertices, GLdouble *normals, GLboolean *edgeFlags, GLsizei numVertices, GLboolean useWireMode)
{
if (useWireMode)
{
glPushAttrib(GL_POLYGON_BIT);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
if (1)
{
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (edgeFlags)
glEnableClientState(GL_EDGE_FLAG_ARRAY);
glVertexPointer(3, GL_DOUBLE, 0, vertices);
glNormalPointer(GL_DOUBLE, 0, normals);
if (edgeFlags)
glEdgeFlagPointer(0,edgeFlags);
glDrawArrays(vertexMode, 0, numVertices);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
if (edgeFlags)
glDisableClientState(GL_EDGE_FLAG_ARRAY);
}
else
{
int i;
glBegin(vertexMode);
for(i=0; i<numVertices; i++)
{
glEdgeFlag(edgeFlags[i]);
glNormal3dv(normals+i*3);
printf("n(%i) = (%1.4f,%1.4f,%1.4f)\n",i,*(normals+i*3),*(normals+i*3+1),*(normals+i*3+2));
glVertex3dv(vertices+i*3);
printf("v(%i) = (%1.4f,%1.4f,%1.4f)\n",i,*(vertices+i*3),*(vertices+i*3+1),*(vertices+i*3+2));
}
glEnd();
}
if (useWireMode)
{
glPopAttrib();
}
}
static void fghGenerateGeometryWithEdgeFlag(int numFaces, int numEdgePerFace, GLdouble *vertices, GLubyte *vertIndices, GLdouble *normals, GLboolean *edgeFlags, GLdouble *vertOut, GLdouble *normOut, GLboolean *edgeFlagsOut)
{
int i,j;
/*
* Build array with vertices from vertex coordinates and vertex indices
* Do same for normals.
* Need to do this because of different normals at shared vertices
* (and because normals' coordinates need to be negated).
*/
for (i=0; i<numFaces; i++)
{
int normIdx = i*3;
int faceIdxVertIdx = i*numEdgePerFace; // index to first element of "row" in vertex indices
for (j=0; j<numEdgePerFace; j++)
{
int outIdx = i*numEdgePerFace*3+j*3;
int vertIdx = vertIndices[faceIdxVertIdx+j]*3;
vertOut[outIdx ] = vertices[vertIdx ];
vertOut[outIdx+1] = vertices[vertIdx+1];
vertOut[outIdx+2] = vertices[vertIdx+2];
normOut[outIdx ] = normals [normIdx ];
normOut[outIdx+1] = normals [normIdx+1];
normOut[outIdx+2] = normals [normIdx+2];
if (edgeFlagsOut)
edgeFlagsOut[faceIdxVertIdx+j] = edgeFlags[j];
}
}
}
static void fghGenerateGeometry(int numFaces, int numEdgePerFace, GLdouble *vertices, GLubyte *vertIndices, GLdouble *normals, GLdouble *vertOut, GLdouble *normOut)
{
fghGenerateGeometryWithEdgeFlag(numFaces, numEdgePerFace, vertices, vertIndices, normals, NULL, vertOut, normOut, NULL);
}
/* -- INTERNAL SETUP OF GEOMETRY --------------------------------------- */
static unsigned int ipow (int x, unsigned int y)
{
return y==0? 1: y==1? x: (y%2? x: 1) * ipow(x*x, y/2);
}
/* -- stuff that can be cached -- */
/* Cache of input to glDrawArrays */
#define DECLARE_SHAPE_CACHE(name,nameICaps,nameCaps)\
static GLboolean name##Cached = FALSE;\
static GLdouble name##_verts[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLdouble name##_norms[nameCaps##_VERT_ELEM_PER_OBJ];\
static void fgh##nameICaps##Generate()\
{\
fghGenerateGeometry(nameCaps##_NUM_FACES, nameCaps##_NUM_EDGE_PER_FACE,\
name##_v, name##_vi, name##_n,\
name##_verts, name##_norms);\
}
#define DECLARE_SHAPE_CACHE_WITH_EDGE_FLAG(name,nameICaps,nameCaps)\
static GLboolean name##Cached = FALSE;\
static GLdouble name##_verts[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLdouble name##_norms[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLboolean name##_edgeFlags[nameCaps##_VERT_PER_OBJ];\
static void fgh##nameICaps##Generate()\
{\
fghGenerateGeometryWithEdgeFlag(nameCaps##_NUM_FACES, nameCaps##_NUM_EDGE_PER_FACE,\
name##_v, name##_vi, name##_n, name##_ef,\
name##_verts, name##_norms, name##_edgeFlags);\
}
/*
* In general, we build arrays with all vertices or normals.
* We cant compress this and use glDrawElements as all combinations of
* vertex and normals are unique.
*/
/* -- Cube -- */
#define CUBE_NUM_VERT 8
#define CUBE_NUM_FACES 6
#define CUBE_NUM_EDGE_PER_FACE 4+2 /* 1.5 is overhead factor when drawing quads as triangles */
#define CUBE_VERT_PER_OBJ (CUBE_NUM_FACES)*(CUBE_NUM_EDGE_PER_FACE)
#define CUBE_VERT_ELEM_PER_OBJ (CUBE_VERT_PER_OBJ)*3
/* Vertex Coordinates */
static GLdouble cube_v[CUBE_NUM_VERT*3] =
{
.5, .5, .5,
-.5, .5, .5,
-.5,-.5, .5,
.5,-.5, .5,
.5,-.5,-.5,
.5, .5,-.5,
-.5, .5,-.5,
-.5,-.5,-.5
};
/* Normal Vectors */
static GLdouble cube_n[CUBE_NUM_FACES*3] =
{
0.0, 0.0, 1.0,
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
-1.0, 0.0, 0.0,
0.0,-1.0, 0.0,
0.0, 0.0,-1.0
};
/* Vertex indices */
static GLubyte cube_vi[CUBE_VERT_PER_OBJ] =
{
0,1,2,0,2,3,
0,3,4,0,4,5,
0,5,6,0,6,1,
1,6,7,1,7,2,
7,4,3,7,3,2,
4,7,6,4,6,5
};
/* edge flags */
static GLboolean cube_ef[CUBE_NUM_EDGE_PER_FACE] =
{
1,1,0,0,1,1
};
DECLARE_SHAPE_CACHE_WITH_EDGE_FLAG(cube,Cube,CUBE);
/* Icosahedron */
#define ICOSAHEDRON_NUM_VERT 12
#define ICOSAHEDRON_NUM_FACES 20
#define ICOSAHEDRON_NUM_EDGE_PER_FACE 3
#define ICOSAHEDRON_VERT_PER_OBJ ICOSAHEDRON_NUM_FACES*ICOSAHEDRON_NUM_EDGE_PER_FACE
#define ICOSAHEDRON_VERT_ELEM_PER_OBJ ICOSAHEDRON_VERT_PER_OBJ*3
/* Vertex Coordinates */
static GLdouble icosahedron_v[ICOSAHEDRON_NUM_VERT*3] =
{
1.0, 0.0, 0.0 ,
0.447213595500, 0.894427191000, 0.0 ,
0.447213595500, 0.276393202252, 0.850650808354,
0.447213595500, -0.723606797748, 0.525731112119,
0.447213595500, -0.723606797748, -0.525731112119,
0.447213595500, 0.276393202252, -0.850650808354,
-0.447213595500, -0.894427191000, 0.0 ,
-0.447213595500, -0.276393202252, 0.850650808354,
-0.447213595500, 0.723606797748, 0.525731112119,
-0.447213595500, 0.723606797748, -0.525731112119,
-0.447213595500, -0.276393202252, -0.850650808354,
-1.0, 0.0, 0.0
};
/* Normal Vectors:
* icosahedron_n[i][0] = ( icosahedron_v[icosahedron_vi[i][1]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) * ( icosahedron_v[icosahedron_vi[i][2]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) - ( icosahedron_v[icosahedron_vi[i][1]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) * ( icosahedron_v[icosahedron_vi[i][2]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) ;
* icosahedron_n[i][1] = ( icosahedron_v[icosahedron_vi[i][1]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) * ( icosahedron_v[icosahedron_vi[i][2]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) - ( icosahedron_v[icosahedron_vi[i][1]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) * ( icosahedron_v[icosahedron_vi[i][2]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) ;
* icosahedron_n[i][2] = ( icosahedron_v[icosahedron_vi[i][1]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) * ( icosahedron_v[icosahedron_vi[i][2]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) - ( icosahedron_v[icosahedron_vi[i][1]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) * ( icosahedron_v[icosahedron_vi[i][2]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) ;
*/
static GLdouble icosahedron_n[ICOSAHEDRON_NUM_FACES*3] =
{
0.760845213037948, 0.470228201835026, 0.341640786498800,
0.760845213036861, -0.179611190632978, 0.552786404500000,
0.760845213033849, -0.581234022404097, 0,
0.760845213036861, -0.179611190632978, -0.552786404500000,
0.760845213037948, 0.470228201835026, -0.341640786498800,
0.179611190628666, 0.760845213037948, 0.552786404498399,
0.179611190634277, -0.290617011204044, 0.894427191000000,
0.179611190633958, -0.940456403667806, 0,
0.179611190634278, -0.290617011204044, -0.894427191000000,
0.179611190628666, 0.760845213037948, -0.552786404498399,
-0.179611190633958, 0.940456403667806, 0,
-0.179611190634277, 0.290617011204044, 0.894427191000000,
-0.179611190628666, -0.760845213037948, 0.552786404498399,
-0.179611190628666, -0.760845213037948, -0.552786404498399,
-0.179611190634277, 0.290617011204044, -0.894427191000000,
-0.760845213036861, 0.179611190632978, -0.552786404500000,
-0.760845213033849, 0.581234022404097, 0,
-0.760845213036861, 0.179611190632978, 0.552786404500000,
-0.760845213037948, -0.470228201835026, 0.341640786498800,
-0.760845213037948, -0.470228201835026, -0.341640786498800,
};
/* Vertex indices */
static GLubyte icosahedron_vi[ICOSAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2 ,
0, 2, 3 ,
0, 3, 4 ,
0, 4, 5 ,
0, 5, 1 ,
1, 8, 2 ,
2, 7, 3 ,
3, 6, 4 ,
4, 10, 5 ,
5, 9, 1 ,
1, 9, 8 ,
2, 8, 7 ,
3, 7, 6 ,
4, 6, 10 ,
5, 10, 9 ,
11, 9, 10 ,
11, 8, 9 ,
11, 7, 8 ,
11, 6, 7 ,
11, 10, 6
};
DECLARE_SHAPE_CACHE(icosahedron,Icosahedron,ICOSAHEDRON);
/* -- Octahedron -- */
#define OCTAHEDRON_NUM_VERT 6
#define OCTAHEDRON_NUM_FACES 8
#define OCTAHEDRON_NUM_EDGE_PER_FACE 3
#define OCTAHEDRON_VERT_PER_OBJ OCTAHEDRON_NUM_FACES*OCTAHEDRON_NUM_EDGE_PER_FACE
#define OCTAHEDRON_VERT_ELEM_PER_OBJ OCTAHEDRON_VERT_PER_OBJ*3
/* Vertex Coordinates */
static GLdouble octahedron_v[OCTAHEDRON_NUM_VERT*3] =
{
1., 0., 0.,
0., 1., 0.,
0., 0., 1.,
-1., 0., 0.,
0., -1., 0.,
0., 0., -1.,
};
/* Normal Vectors */
static GLdouble octahedron_n[OCTAHEDRON_NUM_FACES*3] =
{
0.577350269189, 0.577350269189, 0.577350269189, /* sqrt(1/3) */
0.577350269189, 0.577350269189,-0.577350269189,
0.577350269189,-0.577350269189, 0.577350269189,
0.577350269189,-0.577350269189,-0.577350269189,
-0.577350269189, 0.577350269189, 0.577350269189,
-0.577350269189, 0.577350269189,-0.577350269189,
-0.577350269189,-0.577350269189, 0.577350269189,
-0.577350269189,-0.577350269189,-0.577350269189
};
/* Vertex indices */
static GLubyte octahedron_vi[OCTAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2,
0, 5, 1,
0, 2, 4,
0, 4, 5,
3, 2, 1,
3, 1, 5,
3, 4, 2,
3, 5, 4
};
DECLARE_SHAPE_CACHE(octahedron,Octahedron,OCTAHEDRON);
/* -- RhombicDodecahedron -- */
#define RHOMBICDODECAHEDRON_NUM_VERT 14
#define RHOMBICDODECAHEDRON_NUM_FACES 12
#define RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE 4
#define RHOMBICDODECAHEDRON_VERT_PER_OBJ RHOMBICDODECAHEDRON_NUM_FACES*RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE
#define RHOMBICDODECAHEDRON_VERT_ELEM_PER_OBJ RHOMBICDODECAHEDRON_VERT_PER_OBJ*3
/* Vertex Coordinates */
static GLdouble rhombicdodecahedron_v[RHOMBICDODECAHEDRON_NUM_VERT*3] =
{
0.0, 0.0, 1.0,
0.707106781187, 0.0 , 0.5,
0.0 , 0.707106781187, 0.5,
-0.707106781187, 0.0 , 0.5,
0.0 , -0.707106781187, 0.5,
0.707106781187, 0.707106781187, 0.0,
-0.707106781187, 0.707106781187, 0.0,
-0.707106781187, -0.707106781187, 0.0,
0.707106781187, -0.707106781187, 0.0,
0.707106781187, 0.0 , -0.5,
0.0 , 0.707106781187, -0.5,
-0.707106781187, 0.0 , -0.5,
0.0 , -0.707106781187, -0.5,
0.0, 0.0, -1.0
};
/* Normal Vectors */
static GLdouble rhombicdodecahedron_n[RHOMBICDODECAHEDRON_NUM_FACES*3] =
{
0.353553390594, 0.353553390594, 0.5,
-0.353553390594, 0.353553390594, 0.5,
-0.353553390594, -0.353553390594, 0.5,
0.353553390594, -0.353553390594, 0.5,
0.0 , 1.0 , 0.0,
-1.0 , 0.0 , 0.0,
0.0 , -1.0 , 0.0,
1.0 , 0.0 , 0.0,
0.353553390594, 0.353553390594, -0.5,
-0.353553390594, 0.353553390594, -0.5,
-0.353553390594, -0.353553390594, -0.5,
0.353553390594, -0.353553390594, -0.5
};
/* Vertex indices */
static GLubyte rhombicdodecahedron_vi[RHOMBICDODECAHEDRON_VERT_PER_OBJ] =
{
0, 1, 5, 2,
0, 2, 6, 3,
0, 3, 7, 4,
0, 4, 8, 1,
5, 10, 6, 2,
6, 11, 7, 3,
7, 12, 8, 4,
8, 9, 5, 1,
5, 9, 13, 10,
6, 10, 13, 11,
7, 11, 13, 12,
8, 12, 13, 9
};
DECLARE_SHAPE_CACHE(rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON);
/* -- Tetrahedron -- */
/* Magic Numbers: r0 = ( 1, 0, 0 )
* r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
* r2 = ( -1/3, - sqrt(2) / 3, sqrt(6) / 3 )
* r3 = ( -1/3, - sqrt(2) / 3, -sqrt(6) / 3 )
* |r0| = |r1| = |r2| = |r3| = 1
* Distance between any two points is 2 sqrt(6) / 3
*
* Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
*/
#define TETRAHEDRON_NUM_VERT 4
#define TETRAHEDRON_NUM_FACES 4
#define TETRAHEDRON_NUM_EDGE_PER_FACE 3
#define TETRAHEDRON_VERT_PER_OBJ TETRAHEDRON_NUM_FACES*TETRAHEDRON_NUM_EDGE_PER_FACE
#define TETRAHEDRON_VERT_ELEM_PER_OBJ TETRAHEDRON_VERT_PER_OBJ*3
/* Vertex Coordinates */
static GLdouble tetrahedron_v[TETRAHEDRON_NUM_VERT*3] =
{
1.0, 0.0, 0.0,
-0.333333333333, 0.942809041582, 0.0,
-0.333333333333, -0.471404520791, 0.816496580928,
-0.333333333333, -0.471404520791, -0.816496580928
};
/* Normal Vectors */
static GLdouble tetrahedron_n[TETRAHEDRON_NUM_FACES*3] =
{
- 1.0, 0.0, 0.0,
0.333333333333, -0.942809041582, 0.0,
0.333333333333, 0.471404520791, -0.816496580928,
0.333333333333, 0.471404520791, 0.816496580928
};
/* Vertex indices */
static GLubyte tetrahedron_vi[TETRAHEDRON_VERT_PER_OBJ] =
{
1, 3, 2,
0, 2, 3,
0, 3, 1,
0, 1, 2
};
DECLARE_SHAPE_CACHE(tetrahedron,Tetrahedron,TETRAHEDRON);
/* -- Sierpinski Sponge -- */
static void fghSierpinskiSpongeGenerate ( int numLevels, GLdouble offset[3], GLdouble scale, GLdouble* vertices, GLdouble* normals )
{
int i, j;
if ( numLevels == 0 )
{
for (i=0; i<TETRAHEDRON_NUM_FACES; i++)
{
int normIdx = i*3;
int faceIdxVertIdx = i*TETRAHEDRON_NUM_EDGE_PER_FACE;
for (j=0; j<TETRAHEDRON_NUM_EDGE_PER_FACE; j++)
{
int outIdx = i*TETRAHEDRON_NUM_EDGE_PER_FACE*3+j*3;
int vertIdx = tetrahedron_vi[faceIdxVertIdx+j]*3;
vertices[outIdx ] = offset[0] + scale * tetrahedron_v[vertIdx ];
vertices[outIdx+1] = offset[1] + scale * tetrahedron_v[vertIdx+1];
vertices[outIdx+2] = offset[2] + scale * tetrahedron_v[vertIdx+2];
normals [outIdx ] = tetrahedron_n[normIdx ];
normals [outIdx+1] = tetrahedron_n[normIdx+1];
normals [outIdx+2] = tetrahedron_n[normIdx+2];
}
}
}
else if ( numLevels > 0 )
{
GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
unsigned int stride = ipow(4,--numLevels)*TETRAHEDRON_VERT_ELEM_PER_OBJ;
scale /= 2.0 ;
for ( i = 0 ; i < TETRAHEDRON_NUM_FACES ; i++ )
{
int idx = i*3;
local_offset[0] = offset[0] + scale * tetrahedron_v[idx ];
local_offset[1] = offset[1] + scale * tetrahedron_v[idx+1];
local_offset[2] = offset[2] + scale * tetrahedron_v[idx+2];
fghSierpinskiSpongeGenerate ( numLevels, local_offset, scale, vertices+i*stride, normals+i*stride );
}
}
}
/* -- Now the various shapes involving circles -- */
/*
* Compute lookup table of cos and sin values forming a cirle
*
* Notes:
* It is the responsibility of the caller to free these tables
* The size of the table is (n+1) to form a connected loop
* The last entry is exactly the same as the first
* The sign of n can be flipped to get the reverse loop
*/
static void fghCircleTable(double **sint,double **cost,const int n)
{
int i;
/* Table size, the sign of n flips the circle direction */
const int size = abs(n);
/* Determine the angle between samples */
const double angle = 2*M_PI/(double)( ( n == 0 ) ? 1 : n );
/* Allocate memory for n samples, plus duplicate of first entry at the end */
*sint = (double *) calloc(sizeof(double), size+1);
*cost = (double *) calloc(sizeof(double), size+1);
/* Bail out if memory allocation fails, fgError never returns */
if (!(*sint) || !(*cost))
{
free(*sint);
free(*cost);
fgError("Failed to allocate memory in fghCircleTable");
}
/* Compute cos and sin around the circle */
(*sint)[0] = 0.0;
(*cost)[0] = 1.0;
for (i=1; i<size; i++)
{
(*sint)[i] = sin(angle*i);
(*cost)[i] = cos(angle*i);
}
/* Last sample is duplicate of the first */
(*sint)[size] = (*sint)[0];
(*cost)[size] = (*cost)[0];
}
/* -- INTERNAL DRAWING functions to avoid code duplication ------------- */
#define DECLARE_INTERNAL_DRAW(vertexMode,name,nameICaps,nameCaps)\
static void fgh##nameICaps( GLboolean useWireMode )\
{\
if (!name##Cached)\
{\
fgh##nameICaps##Generate();\
name##Cached = GL_TRUE;\
}\
fghDrawGeometry(vertexMode,name##_verts,name##_norms,NULL,nameCaps##_VERT_PER_OBJ,useWireMode);\
}
static void fghCube( GLdouble dSize, GLboolean useWireMode )
{
if (!cubeCached)
{
fghCubeGenerate();
cubeCached = GL_TRUE;
}
if (dSize!=1.)
{
int i;
/* Need to build new vertex list containing vertices for cube of different size */
GLdouble *vertices = malloc(CUBE_VERT_ELEM_PER_OBJ * sizeof(GLdouble));
for (i=0; i<CUBE_VERT_ELEM_PER_OBJ; i++)
vertices[i] = dSize*cube_verts[i];
fghDrawGeometry(GL_TRIANGLES,vertices ,cube_norms,cube_edgeFlags,CUBE_VERT_PER_OBJ,useWireMode);
}
else
fghDrawGeometry(GL_TRIANGLES,cube_verts,cube_norms,cube_edgeFlags,CUBE_VERT_PER_OBJ,useWireMode);
}
DECLARE_INTERNAL_DRAW(GL_TRIANGLES,icosahedron,Icosahedron,ICOSAHEDRON);
DECLARE_INTERNAL_DRAW(GL_TRIANGLES,octahedron,Octahedron,OCTAHEDRON);
DECLARE_INTERNAL_DRAW(GL_QUADS,rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON);
DECLARE_INTERNAL_DRAW(GL_TRIANGLES,tetrahedron,Tetrahedron,TETRAHEDRON);
static void fghSierpinskiSponge ( int numLevels, GLdouble offset[3], GLdouble scale, GLboolean useWireMode )
{
GLdouble *vertices;
GLdouble * normals;
GLsizei numTetr = numLevels<0? 0 : ipow(4,numLevels); /* No sponge for numLevels below 0 */
GLsizei numVert = numTetr*TETRAHEDRON_VERT_PER_OBJ;
if (numTetr)
{
/* Allocate memory */
vertices = malloc(numVert*3 * sizeof(GLdouble));
normals = malloc(numVert*3 * sizeof(GLdouble));
/* Generate elements */
fghSierpinskiSpongeGenerate ( numLevels, offset, scale, vertices, normals );
/* Draw and cleanup */
fghDrawGeometry(GL_TRIANGLES,vertices,normals,NULL,numVert,useWireMode);
free(vertices);
free(normals );
}
}
/* -- INTERFACE FUNCTIONS ---------------------------------------------- */
/*
* Draws a solid sphere
*/
void FGAPIENTRY glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
{
int i,j;
/* Adjust z and radius as stacks are drawn. */
double z0,z1;
double r0,r1;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSphere" );
fghCircleTable(&sint1,&cost1,-slices);
fghCircleTable(&sint2,&cost2,stacks*2);
/* The top stack is covered with a triangle fan */
z0 = 1.0;
z1 = cost2[(stacks>0)?1:0];
r0 = 0.0;
r1 = sint2[(stacks>0)?1:0];
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,1);
glVertex3d(0,0,radius);
for (j=slices; j>=0; j--)
{
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
}
glEnd();
/* Cover each stack with a quad strip, except the top and bottom stacks */
for( i=1; i<stacks-1; i++ )
{
z0 = z1; z1 = cost2[i+1];
r0 = r1; r1 = sint2[i+1];
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
}
/* The bottom stack is covered with a triangle fan */
z0 = z1;
r0 = r1;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,-1);
glVertex3d(0,0,-radius);
for (j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
/* Release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
* Draws a wire sphere
*/
void FGAPIENTRY glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
{
int i,j;
/* Adjust z and radius as stacks and slices are drawn. */
double r;
double x,y,z;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSphere" );
fghCircleTable(&sint1,&cost1,-slices );
fghCircleTable(&sint2,&cost2, stacks*2);
/* Draw a line loop for each stack */
for (i=1; i<stacks; i++)
{
z = cost2[i];
r = sint2[i];
glBegin(GL_LINE_LOOP);
for(j=0; j<=slices; j++)
{
x = cost1[j];
y = sint1[j];
glNormal3d(x,y,z);
glVertex3d(x*r*radius,y*r*radius,z*radius);
}
glEnd();
}
/* Draw a line loop for each slice */
for (i=0; i<slices; i++)
{
glBegin(GL_LINE_STRIP);
for(j=0; j<=stacks; j++)
{
x = cost1[i]*sint2[j];
y = sint1[i]*sint2[j];
z = cost2[j];
glNormal3d(x,y,z);
glVertex3d(x*radius,y*radius,z*radius);
}
glEnd();
}
/* Release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
* Draws a solid cone
*/
void FGAPIENTRY glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z0,z1;
double r0,r1;
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCone" );
fghCircleTable(&sint,&cost,-slices);
/* Cover the circular base with a triangle fan... */
z0 = 0.0;
z1 = zStep;
r0 = base;
r1 = r0 - rStep;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0,0.0,-1.0);
glVertex3d(0.0,0.0, z0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*r0, sint[j]*r0, z0);
glEnd();
/* Cover each stack with a quad strip, except the top stack */
for( i=0; i<stacks-1; i++ )
{
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost[j]*cosn, sint[j]*cosn, sinn);
glVertex3d(cost[j]*r0, sint[j]*r0, z0 );
glVertex3d(cost[j]*r1, sint[j]*r1, z1 );
}
z0 = z1; z1 += zStep;
r0 = r1; r1 -= rStep;
glEnd();
}
/* The top stack is covered with individual triangles */
glBegin(GL_TRIANGLES);
glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn);
for (j=0; j<slices; j++)
{
glVertex3d(cost[j+0]*r0, sint[j+0]*r0, z0 );
glVertex3d(0, 0, height);
glNormal3d(cost[j+1]*sinn, sint[j+1]*sinn, cosn );
glVertex3d(cost[j+1]*r0, sint[j+1]*r0, z0 );
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a wire cone
*/
void FGAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
double r = base;
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCone" );
fghCircleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<stacks; i++)
{
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
glVertex3d(cost[j]*r, sint[j]*r, z );
}
glEnd();
z += zStep;
r -= rStep;
}
/* Draw the slices */
r = base;
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn );
glVertex3d(cost[j]*r, sint[j]*r, 0.0 );
glVertex3d(0.0, 0.0, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a solid cylinder
*/
void FGAPIENTRY glutSolidCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z0,z1;
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
/* Pre-computed circle */
double *sint,*cost;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCylinder" );
fghCircleTable(&sint,&cost,-slices);
/* Cover the base and top */
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, -1.0 );
glVertex3d(0.0, 0.0, 0.0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0);
glEnd();
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, 1.0 );
glVertex3d(0.0, 0.0, height);
for (j=slices; j>=0; j--)
glVertex3d(cost[j]*radius, sint[j]*radius, height);
glEnd();
/* Do the stacks */
z0 = 0.0;
z1 = zStep;
for (i=1; i<=stacks; i++)
{
if (i==stacks)
z1 = height;
glBegin(GL_QUAD_STRIP);
for (j=0; j<=slices; j++ )
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z1 );
}
glEnd();
z0 = z1; z1 += zStep;
}
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a wire cylinder
*/
void FGAPIENTRY glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
/* Pre-computed circle */
double *sint,*cost;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCylinder" );
fghCircleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<=stacks; i++)
{
if (i==stacks)
z = height;
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
glNormal3d(cost[j], sint[j], 0.0);
glVertex3d(cost[j]*radius, sint[j]*radius, z );
}
glEnd();
z += zStep;
}
/* Draw the slices */
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a wire torus
*/
void FGAPIENTRY glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
{
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
double *vertex, *normal;
int i, j;
double spsi, cpsi, sphi, cphi ;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTorus" );
if ( nSides < 1 ) nSides = 1;
if ( nRings < 1 ) nRings = 1;
/* Allocate the vertices array */
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
glPushMatrix();
dpsi = 2.0 * M_PI / (double)nRings ;
dphi = -2.0 * M_PI / (double)nSides ;
psi = 0.0;
for( j=0; j<nRings; j++ )
{
cpsi = cos ( psi ) ;
spsi = sin ( psi ) ;
phi = 0.0;
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
cphi = cos ( phi ) ;
sphi = sin ( phi ) ;
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 2) = sphi * iradius ;
*(normal + offset + 0) = cpsi * cphi ;
*(normal + offset + 1) = spsi * cphi ;
*(normal + offset + 2) = sphi ;
phi += dphi;
}
psi += dpsi;
}
for( i=0; i<nSides; i++ )
{
glBegin( GL_LINE_LOOP );
for( j=0; j<nRings; j++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
}
glEnd();
}
for( j=0; j<nRings; j++ )
{
glBegin(GL_LINE_LOOP);
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
}
glEnd();
}
free ( vertex ) ;
free ( normal ) ;
glPopMatrix();
}
/*
* Draws a solid torus
*/
void FGAPIENTRY glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
{
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
double *vertex, *normal;
int i, j;
double spsi, cpsi, sphi, cphi ;
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTorus" );
if ( nSides < 1 ) nSides = 1;
if ( nRings < 1 ) nRings = 1;
/* Increment the number of sides and rings to allow for one more point than surface */
nSides ++ ;
nRings ++ ;
/* Allocate the vertices array */
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
glPushMatrix();
dpsi = 2.0 * M_PI / (double)(nRings - 1) ;
dphi = -2.0 * M_PI / (double)(nSides - 1) ;
psi = 0.0;
for( j=0; j<nRings; j++ )
{
cpsi = cos ( psi ) ;
spsi = sin ( psi ) ;
phi = 0.0;
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
cphi = cos ( phi ) ;
sphi = sin ( phi ) ;
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 2) = sphi * iradius ;
*(normal + offset + 0) = cpsi * cphi ;
*(normal + offset + 1) = spsi * cphi ;
*(normal + offset + 2) = sphi ;
phi += dphi;
}
psi += dpsi;
}
glBegin( GL_QUADS );
for( i=0; i<nSides-1; i++ )
{
for( j=0; j<nRings-1; j++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
glNormal3dv( normal + offset + 3 );
glVertex3dv( vertex + offset + 3 );
glNormal3dv( normal + offset + 3 * nSides + 3 );
glVertex3dv( vertex + offset + 3 * nSides + 3 );
glNormal3dv( normal + offset + 3 * nSides );
glVertex3dv( vertex + offset + 3 * nSides );
}
}
glEnd();
free ( vertex ) ;
free ( normal ) ;
glPopMatrix();
}
/*
*
*/
void FGAPIENTRY glutWireDodecahedron( void )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireDodecahedron" );
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/*
*
*/
void FGAPIENTRY glutSolidDodecahedron( void )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidDodecahedron" );
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
/* Macro to generate interface functions */
#define DECLARE_SHAPE_INTERFACE(nameICaps)\
void FGAPIENTRY glutWire##nameICaps( void )\
{\
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWire"#nameICaps );\
fgh##nameICaps( TRUE );\
}\
void FGAPIENTRY glutSolid##nameICaps( void )\
{\
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolid"#nameICaps );\
fgh##nameICaps( FALSE );\
}
void FGAPIENTRY glutWireCube( GLdouble dSize )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCube" );
fghCube( dSize, TRUE );
}
void FGAPIENTRY glutSolidCube( GLdouble dSize )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCube" );
fghCube( dSize, FALSE );
}
DECLARE_SHAPE_INTERFACE(Icosahedron);
DECLARE_SHAPE_INTERFACE(Octahedron);
DECLARE_SHAPE_INTERFACE(RhombicDodecahedron);
void FGAPIENTRY glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSierpinskiSponge" );
fghSierpinskiSponge ( num_levels, offset, scale, TRUE );
}
void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSierpinskiSponge" );
fghSierpinskiSponge ( num_levels, offset, scale, FALSE );
}
DECLARE_SHAPE_INTERFACE(Tetrahedron);
/*** END OF FILE ***/