1
1
Fork 0
mirror of https://github.com/QB64Official/qb64.git synced 2024-09-13 10:33:51 +00:00
qb64/internal/c/parts/video/image/src.c
2022-08-17 21:03:44 +05:30

375 lines
12 KiB
C

//----------------------------------------------------------------------------------------------------
// ___ ___ __ _ _ ___ _ _ _
// / _ \| _ ) / /| | | |_ _|_ __ __ _ __ _ ___ | | (_) |__ _ _ __ _ _ _ _ _
// | (_) | _ \/ _ \_ _| | || ' \/ _` / _` / -_) | |__| | '_ \ '_/ _` | '_| || |
// \__\_\___/\___/ |_| |___|_|_|_\__,_\__, \___| |____|_|_.__/_| \__,_|_| \_, |
// |___/ |__/
//
// QB64 Image Library
// Powered by stb_image (https://github.com/nothings/stb) & dr_pcx (https://github.com/mackron/dr_pcx)
//
// Copyright (c) 2022 Samuel Gomes
// https://github.com/a740g
//
//-----------------------------------------------------------------------------------------------------
#ifndef DEPENDENCY_IMAGE_CODEC
// Stub(s):
int32_t func__loadimage(qbs *f, int32_t bpp, int32_t passed);
#else
#define DR_PCX_IMPLEMENTATION
#include "dr_pcx.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
// The byte ordering here are straight from libqb.cpp. So, if libqb.cpp is wrong, then we are wrong! ;)
#define IMAGE_GET_BGRA_RED(c) (uint32_t(c) >> 16 & 0xFF)
#define IMAGE_GET_BGRA_GREEN(c) (uint32_t(c) >> 8 & 0xFF)
#define IMAGE_GET_BGRA_BLUE(c) (uint32_t(c) & 0xFF)
#define IMAGE_GET_BGRA_ALPHA(c) (uint32_t(c) >> 24)
#define IMAGE_MAKE_BGRA(r, g, b, a) (uint32_t((uint8_t(b) | (uint16_t(uint8_t(g)) << 8)) | (uint32_t(uint8_t(r)) << 16) | (uint32_t(uint8_t(a)) << 24)))
// Calculates the RGB distance in the RGB color cube
#define IMAGE_CALCULATE_RGB_DISTANCE(r1, g1, b1, r2, g2, b2) \
sqrt(((float(r2) - float(r1)) * (float(r2) - float(r1))) + ((float(g2) - float(g1)) * (float(g2) - float(g1))) + \
((float(b2) - float(b1)) * (float(b2) - float(b1))))
/// <summary>
/// Decodes a PCX image using the dr_pcx library.
/// </summary>
/// <param name="content">A pointer to the file in memory</param>
/// <param name="bytes">The length of the file</param>
/// <param name="result">Out: bit 1=Success, bit 2=32bit. This cannot be NULL[BGRA]</param>
/// <param name="x">Out: width in pixels. This cannot be NULL</param>
/// <param name="y">Out: height in pixels. This cannot be NULL</param>
/// <returns>A pointer to the raw pixel data in RGBA format or NULL on failure</returns>
static uint8_t *image_decode_drpcx(uint8_t *content, int32_t bytes, int32_t *result, int32_t *x, int32_t *y)
{
auto h = 0, w = 0, comp = 0;
*result = 0;
auto out = drpcx_load_memory(content, bytes, DRPCX_FALSE, &w, &h, &comp, 4);
if (!out)
return nullptr;
*result = 1 + 2;
*x = w;
*y = h;
return out;
}
/// <summary>
/// Decodes an image using the stb_image library.
/// </summary>
/// <param name="content">A pointer to the file in memory</param>
/// <param name="bytes">The length of the file</param>
/// <param name="result">Out: bit 1=Success, bit 2=32bit[BGRA]. This cannot be NULL</param>
/// <param name="x">Out: width in pixels. This cannot be NULL</param>
/// <param name="y">Out: height in pixels. This cannot be NULL</param>
/// <returns>A pointer to the raw pixel data in RGBA format or NULL on failure</returns>
static uint8_t *image_decode_stbi(uint8_t *content, int32_t bytes, int32_t *result, int32_t *x, int32_t *y)
{
auto h = 0, w = 0, comp = 0;
*result = 0;
auto out = stbi_load_from_memory(content, bytes, &w, &h, &comp, 4);
if (!out)
return nullptr;
*result = 1 + 2;
*x = w;
*y = h;
return out;
}
/// <summary>
/// Clamps a color channel to the range 0 - 255.
/// </summary>
/// <param name="n">The color component</param>
/// <returns>The clamped value</returns>
static inline uint8_t image_clamp_component(int32_t n)
{
n &= -(n >= 0);
return n | ((255 - n) >> 31);
}
/// <summary>
/// This takes in a 32bpp (BGRA) image raw data and spits out an 8bpp raw image along with it's 256 color (BGRA) palette.
/// </summary>
/// <param name="src">The source raw image data. This must be in BGRA format and not NULL</param>
/// <param name="w">The widht of the image in pixels</param>
/// <param name="h">The height of the image in pixels</param>
/// <param name="paletteOut">A 256 color palette if the operation was successful. This cannot be NULL</param>
/// <returns>A pointer to a 8bpp raw image or NULL if operation failed</returns>
static uint8_t *image_convert_8bpp(uint8_t *src, int32_t w, int32_t h, uint32_t *paletteOut)
{
static struct
{
uint32_t r, g, b;
uint32_t count;
} cubes[256];
// https://en.wikipedia.org/wiki/Ordered_dithering
static uint8_t bayerMatrix[16] = {0, 8, 2, 10, 12, 4, 14, 6, 3, 11, 1, 9, 15, 7, 13, 5};
// Allocate memory for new image (8-bit indexed)
auto pixels = (uint8_t *)malloc(w * h);
if (!pixels)
{
return nullptr;
}
memset(cubes, NULL, sizeof(cubes));
// Quantization phase
auto dst = pixels;
for (auto y = 0; y < h; y++)
{
for (auto x = 0; x < w; x++)
{
int32_t t = bayerMatrix[((y & 3) << 2) + (x & 3)];
int32_t b = image_clamp_component((*src++) + (t << 1));
int32_t g = image_clamp_component((*src++) + (t << 1));
int32_t r = image_clamp_component((*src++) + (t << 1));
++src; // Ignore alpha
// Quantize
uint8_t k = ((r >> 5) << 5) + ((g >> 5) << 2) + (b >> 6);
(*dst++) = k;
// Prepare RGB cubes for CLUT
cubes[k].r += r;
cubes[k].g += g;
cubes[k].b += b;
cubes[k].count++;
}
}
// Generate a uniform CLUT based on the quantized colors
for (auto i = 0; i < 256; i++)
{
if (cubes[i].count)
{
paletteOut[i] = IMAGE_MAKE_BGRA(cubes[i].r / cubes[i].count, cubes[i].g / cubes[i].count, cubes[i].b / cubes[i].count, 0xFF);
}
else
{
paletteOut[i] = IMAGE_MAKE_BGRA(0, 0, 0, 0xFF);
}
}
return pixels;
}
/// <summary>
/// This modifies an *8bpp* image 'src' to use 'dst_pal' instead of 'src_pal'
/// </summary>
/// <param name="src">A pointer to the 8bpp image pixel data. This modifies data 'src' points to and cannot be NULL</param>
/// <param name="w">The width of the image in pixels</param>
/// <param name="h">The height of the image in pixels</param>
/// <param name="src_pal">The image's original palette. This cannot be NULL</param>
/// <param name="dst_pal">The destination palette. This cannot be NULL</param>
static void image_remap_palette(uint8_t *src, int32_t w, int32_t h, uint32_t *src_pal, uint32_t *dst_pal)
{
static uint32_t palMap[256];
memset(palMap, NULL, sizeof(palMap));
// Match the palette
for (auto x = 0; x < 256; x++)
{
auto oldDist = IMAGE_CALCULATE_RGB_DISTANCE(0, 0, 0, 255, 255, 255); // The farthest we can go in the color cube
for (auto y = 0; y < 256; y++)
{
auto newDist = IMAGE_CALCULATE_RGB_DISTANCE(IMAGE_GET_BGRA_RED(src_pal[x]), IMAGE_GET_BGRA_GREEN(src_pal[x]), IMAGE_GET_BGRA_BLUE(src_pal[x]),
IMAGE_GET_BGRA_RED(dst_pal[y]), IMAGE_GET_BGRA_GREEN(dst_pal[y]), IMAGE_GET_BGRA_BLUE(dst_pal[y]));
if (oldDist > newDist)
{
oldDist = newDist;
palMap[x] = y;
}
}
}
// Update the bitmap to use the matched palette
for (auto c = 0; c < (w * h); c++)
{
src[c] = palMap[src[c]];
}
}
/// <summary>
/// This function loads an image into memory and returns valid LONG image handle values that are less than -1.
/// </summary>
/// <param name="f">The filename of the image</param>
/// <param name="bpp">Mode: 32=32bpp, 33=hardware acclerated 32bpp, 256=8bpp or 257=8bpp without palette remap</param>
/// <param name="passed">How many parameters were passed?</param>
/// <returns>Valid LONG image handle values that are less than -1 or -1 on failure</returns>
int32_t func__loadimage(qbs *f, int32_t bpp, int32_t passed)
{
if (new_error)
return 0;
auto isHardware = false;
auto dontRemapPalette = false;
// Handle special cases
if (bpp == 33)
{
bpp = 32;
isHardware = true;
}
else if (bpp == 257)
{
bpp = 256;
dontRemapPalette = true;
}
// Validate bpp
if (passed)
{
if ((bpp != 32) && (bpp != 256))
{
error(5);
return 0;
}
}
else
{
if (write_page->text)
{
error(5);
return 0;
}
bpp = -1;
}
if (!f->len)
return -1; // return invalid handle if null length string
// Load the file
auto fh = gfs_open(f, 1, 0, 0);
if (fh < 0)
return -1;
auto lof = gfs_lof(fh);
auto content = (uint8 *)malloc(lof);
if (!content)
{
gfs_close(fh);
return -1;
}
auto result = gfs_read(fh, -1, content, lof);
gfs_close(fh);
if (result < 0)
{
free(content);
return -1;
}
int32_t x, y;
// Try to load the image using dr_pcx
auto pixels = image_decode_drpcx(content, lof, &result, &x, &y);
// If that failed try loading via stb_image
if (!(result & 1))
{
pixels = image_decode_stbi(content, lof, &result, &x, &y);
}
// Free the memory holding the file
free(content);
// Return failure if nothing was able to load the image
if (!(result & 1))
return -1;
// Convert RGBA to BGRA
auto cp = pixels;
for (auto y2 = 0; y2 < y; y2++)
{
for (auto x2 = 0; x2 < x; x2++)
{
auto r = cp[0];
auto b = cp[2];
cp[0] = b;
cp[2] = r;
cp += 4;
}
}
int32_t i; // Image handle to be returned
// Convert image to 8bpp if requested by the user
if (bpp == 256)
{
i = func__newimage(x, y, 256, 1);
if (i == -1)
{
free(pixels);
return -1;
}
auto palette = (uint32_t *)malloc(256 * sizeof(uint32_t)); // 3 bytes for bgr + 1 for alpha (basically a uint32_t)
if (!palette)
{
free(pixels);
return -1;
}
auto pixels256 = image_convert_8bpp(pixels, x, y, palette);
if (!pixels256)
{
free(palette);
free(pixels);
return -1;
}
if (dontRemapPalette)
{
// Copy the 8bpp pixel data and then free it
memcpy(img[-i].offset, pixels256, x * y);
free(pixels256);
// Copy the palette and then free it
memcpy(img[-i].pal, palette, 256 * sizeof(uint32_t));
free(palette);
}
else
{
// Remap the image indexes to QB64 default palette and then free our palette
image_remap_palette(pixels256, x, y, palette, palette_256);
free(palette);
// Copy the 8bpp pixel data and then free it
memcpy(img[-i].offset, pixels256, x * y);
free(pixels256);
// Copy the default QB64 palette
memcpy(img[-i].pal, palette_256, 256 * sizeof(uint32_t));
}
}
else
{
i = func__newimage(x, y, 32, 1);
if (i == -1)
{
free(pixels);
return -1;
}
memcpy(img[-i].offset, pixels, x * y * sizeof(uint32_t));
}
// Free pixel memory. We can do this because both dr_pcx and stb_image uses free()
free(pixels);
// This only executes if bpp is 32
if (isHardware)
{
auto iHardware = func__copyimage(i, 33, 1);
sub__freeimage(i, 1);
i = iHardware;
}
return i;
}
#endif